Engineering Agricultural and Pharmacy Common Entrance Test( EAMCET) / (EAPCET) - Syllabus (Engineering)

Subject: Mathematics
Algebra:
  • Functions: Types of functions – Definitions - Domain, Range.
  • Matrices: Types of matrices - Scalar multiple of a matrix and multiplication of matrices - Transpose of a matrix – Determinants (excluding properties of determinants) - Adjoint and Inverse of a matrix - Rank of a matrix - Solution of simultaneous linear equations (Excluding Gauss Jordan Method).
  • Complex Numbers: Complex number as an ordered pair of real numbers- fundamental operations - Representation of complex numbers in the form a+ib - Modulus and amplitude of complex numbers–Illustrations - Geometrical and Polar Representation of complex numbers in the Argand plane-Argand diagram.
  • De Moivre’s Theorem: De Moivre’s theorem- Integral and Rational indices - nth roots of unity- Geometrical Interpretations–Illustrations.
  • Quadratic Expressions: Quadratic expressions, equations in one variable - Sign of quadratic expressions – Change in signs – Maximum and minimum values, Quadratic Inequations.
  • Theory of Equations: The relation between the roots and coefficients in an equation - Solving the equations when two or more roots are connected by a certain relation - Equation with real coefficients, the occurrence of complex roots in conjugate pairs, and its consequences, Transformation of equations- Reciprocal equations.
  • Permutations and Combinations: Fundamental Principle of counting – linear and circular permutations- Permutations of ‘n’ dissimilar things taken ‘r’ at a time - Permutations when repetitions allowed - Circular permutations - Permutations with constraint repetitions - Combinations-definitions, certain theorems.
  • Binomial Theorem: Binomial theorem for positive integral index, Binomial theorem for rational Index (without proof). Approximations using the Binomial theorem
  • Partial fractions: Partial fractions of f(x)/g(x) when g(x) contains non –repeated linear factors - Partial fractions of f(x)/g(x) where both f(x) and g(x) are polynomials and when g(x) contains repeated and/or non-repeated linear factors - Partial fractions of f(x)/g(x) when g(x) contains irreducible factors.
Trigonometry:
  • Trigonometric Ratios up to Transformations: Graphs and Periodicity of Trigonometric functions - Trigonometric ratios and Compound angles - Trigonometric ratios of multiple and sub-multiple angles - Transformations - Sum and Product rules.
  • Hyperbolic Functions: Definition of Hyperbolic Function – Graphs - Definition of Inverse Hyperbolic Functions – Graphs - Addition formulae of Hyperbolic Functions.
  • Properties of Triangles: Relation between sides and angles of a Triangle - Sine, Cosine, Tangent and Projection rules- Half angle formulae and areas of a triangle–In-circle and Excircle of aTriangle (excluding problems related to heights and distances).
Vector Algebra:
  • Addition of Vectors: Vectors as a triad of real numbers - Classification of vectors - Addition of vectors - Scalar multiplication - Angle between two non-zero vectors - Linear combination of vectors - Component of a vector in three dimensions - Vector equations of line and plane including their Cartesian equivalent forms.
  • Product of Vectors: Scalar Product - Geometrical Interpretations - orthogonal projections - Properties of dot product - Expression of the dot product in i, j, k system - Angle between two vectors - Geometrical Vector methods – Vector equations of the plane in normal form-Angle between two planes- Vector product of two vectors and properties- Vector product in i, j, k system- Vector Areas.
Measures of Dispersion and Probability:
  • Measures of Dispersion - Range - Mean deviation - Variance and standard deviation of ungrouped/grouped data, coefficient of variation, and analysis of frequency distribution with equal means but different variances.
  • Probability: Random experiments and events - Classical definition of probability, Axiomatic approach and addition theorem of probability - Independent and dependent events - conditional probability- multiplication theorem and Baye’s theorem.
  • Random Variables and Probability Distributions: Random Variables - Theoretical discrete distributions – Binomial and Poisson Distributions.
Coordinate Geometry:
  • Locus: Definition of locus –Illustrations-To find equations of locus- problems connected to it.
  • The Straight Line: Revision of fundamental results - Straight line - Normal form – Illustrations - Straight line - Symmetric form - Straight line - Reduction into various forms - Intersection of two Straight Lines - Family of straight lines - Concurrent lines - Condition for Concurrent lines - Angle between two lines Length of perpendicular from a point to a Line - Distance between two parallel lines - Concurrent lines - properties related to a triangle.
  • Pair of Straight lines: Equations of pair of lines passing through origin - angle between a pair of lines - Condition for perpendicular and coincident lines, bisectors of angles - Pair of bisectors of angles (excluding proofs of all the theorems only) - Pair of lines - second-degree general equation - Conditions for parallel lines - the distance between them, Point of intersection of pair of lines - Homogenizing a second-degree equation with a first-degree equation in x and y.
  • Circle: Equation of circle -standard form-center and radius equation of a circle with a given line segment as diameter & equation of a circle through three non-collinear points - parametric equations of a circle - Position of a point in the plane of a circle – the power of a point-definition of tangent-length of a tangent - Position of a straight line in the plane of a circle-conditions for a line to be tangent – chord joining two points on a circle – equation of the tangent at a point on the circle- point of contact-equation of normal-Chord of contact pole and polar-conjugate points and conjugate lines- equation of chord with given middle point, Relative position of two circles- circles touching each other externally, internally common tangents –centers of similitude- equation of pair of tangents from an external point.
  • System of circles: Angle between two intersecting circles –condition for orthogonality - Radical axis of two circles- properties- Common chord and common tangent of two circles –radical center - Intersection of a line and a Circle.
  • Parabola: Conic sections –Parabola- equation of parabola in standard form-different forms of parabola- parametric equations, Equations of tangent and normal at a point on the parabola (Cartesian and Parametric)- conditions for a straight line to be a tangent.
  • Ellipse: Equation of ellipse in standard form- Parametric equations, Equation of tangent and normal at a point on the ellipse (Cartesian and parametric)- condition for a straight line to be a tangent.
  • Hyperbola: Equation of hyperbola in standard form- Parametric equations - Equations of tangent and normal at a point on the hyperbola (Cartesian and parametric) - conditions for a straight line to be tangent-Asymptotes.
  • Three-Dimensional Coordinates: Coordinates - Section formulae - Centroid of a triangle and tetrahedron.
  • Direction Cosines and Direction Ratios: Direction Cosines –Direction Ratios (Excluding angle between two lines).
  • Plane: Cartesian equation of Plane –Simple Illustrations (Excluding angle between two planes).
Calculus:
  • Limits and Continuity: Intervals and neighborhoods – Limits - Standard Limits–Continuity.
  • Differentiation: Derivative of a function - Elementary Properties - Trigonometric, Inverse Trigonometric, Hyperbolic, Inverse Hyperbolic Function – Derivatives - Methods of Differentiation – Second Order Derivatives.
  • Applications of Derivatives: Geometrical Interpretation of a derivative - Equations of tangents and normals - Angles between two curves and condition for orthogonality of curves - Increasing and decreasing functions - Maxima and Minima
  • Integration: Integration as the inverse process of differentiation- Standard forms -properties of integrals - Method of substitution- integration of Algebraic, exponential, logarithmic, trigonometric and inverse trigonometric functions - Integration by parts – Integration by partial fractions method – Reduction formulae.
  • Definite Integrals: Definite Integral as the limit of sum, Interpretation of Definite Integral as an area. Fundamental theorem of Integral Calculus. Properties, Reduction formulae, Application of Definite integral to areas.
  • Differential equations: Formation of differential equation-Degree and order of an ordinary differential equation - Solving differential equation by i) Variables separable method, ii) Homogeneous differential equation, iii) Non Homogeneous differential equation iv) Linear differential equations
Subject: Physics
Physical World:
  • What is physics? Scope and excitement of physics. Physics, technology and society, Fundamental forces in nature, Nature of physical laws
Units and Measurement:
  • The international system of units, Measurement of Length, Measurement of Large Distances, Estimation of Very Small Distances, Size of a Molecule, Range of Lengths, Measurement of Mass, Range of Masses, Measurement of time, Accuracy, precision of instruments and errors in measurement, Systematic errors, random errors, least count error, Absolute Error, Relative Error and Percentage Error, Combination of Errors, Significant figures, Rules for Arithmetic Operations with Significant Figures, Rounding off the Uncertain Digits, Rules for Determining the Uncertainty in the Results of Arithmetic Calculations, Dimensions of Physical Quantities, Dimensional Formulae and dimensional equations, Dimensional Analysis and its Applications, Checking the Dimensional Consistency of Equations, Deducing Relation among the Physical Quantities.
Motion in a Straight Line:
  • Position, path length and displacement, average velocity and average speed, instantaneous velocity and speed, acceleration, kinematic equations for uniformly accelerated motion, relative velocity
Motion in a Plane:
  • Scalars and vectors, position and displacement vectors, equality of vectors, multiplication of vectors by real numbers, addition and subtraction of vectors - graphical method, resolution of vectors, vector addition - analytical method, motion in a plane, position vector and displacement, velocity, acceleration, motion in a plane with constant acceleration, relative velocity in two dimensions, projectile motion, equation of path of a projectile, time of maximum height, maximum height of a projectile, horizontal range of projectile, uniform circular motion.
Laws of Motion:
  • Aristotle’s fallacy, Equilibrium of a particle, Common forces in mechanics, friction, types of friction, static, kinetic, and rolling frictions, Circular motion, Motion of a car on a level road, Motion of a car on a banked road, solving problems in mechanics.
Work, Energy and Power:
  • The Scalar Product, Notions of work and kinetic energy, The work-energy theorem, Work, Kinetic energy, Work done by a variable force, The energy theorem for a variable force, The concept of Potential Energy, The conservation of Mechanical Energy, The Potential Energy of a spring, Various forms of energy, Heat, Chemical Energy, Electrical Energy, The Equivalence of Mass and Energy, Nuclear Energy, The Principle of Conservation of Energy, Power, Collisions, Elastic, and Inelastic Collisions, Collisions in one dimension, Coefficient of Restitution and its determination, Collisions in Two Dimensions.
Oscillations:
  • Periodic and oscillatory motions, Period and frequency, Displacement, Simple harmonic motion (S.H.M.), Simple harmonic motion and uniform circular motion, Velocity and acceleration in simple harmonic motion, Force law for Simple harmonic Motion, Energy in simple harmonic motion, some systems executing Simple Harmonic Motion, Oscillations due to a spring, The Simple Pendulum, damped simple harmonic motion, Forced oscillations and resonance.
Gravitation:
  • The universal law of gravitation, central forces, the gravitational constant, Acceleration due to gravity of the earth, Acceleration due to gravity below and above the surface of the earth, Gravitational potential energy, Escape speed, Orbital Speed, Earth satellites, Energy of an orbiting satellite, Geostationary and polar satellites, Weightlessness.
Mechanical Properties of Solids:
  • Elastic behavior of solids, Stress and strain, Hooke’s law, Stress-strain curve, Elastic moduli, Young’s Modulus, Determination of Young’s Modulus of the Material of a Wire, Shear Modulus, Bulk Modulus, Applications of elastic behavior of materials.
Mechanical Properties of Fluids:
  • Pressure, Pascal’s Law, Variation of Pressure with Depth, Atmospheric Pressure and Gauge Pressure, Hydraulic Machines, Archimedes’ Principle, Streamline flow, Bernoulli’s principle, Speed of Efflux, Torricelli’s Law, Venturi- meter, Blood Flow and Heart Attack, Dynamic Lift, Viscosity, Variation of Viscosity of fluids with temperature, Stokes’ Law, Reynolds number, Critical Velocity, Surface tension and Surface Energy, Angle of Contact, Drops, and Bubbles, Capillary Rise, Detergents and Surface Tension.
Thermal Properties of Matter:
  • Temperature and heat, Measurement of temperature, Ideal-gas equation and absolute temperature, Thermal expansion, Specific heat capacity, Calorimetry, Change of state, Triple Point, Regelation, Latent Heat, Black body Radiation, Greenhouse Effect, Newton’s law of cooling and its experimental verification.
Thermodynamics:
  • Thermal equilibrium, Zeroth law of thermodynamics, Heat, Internal Energy and work, First law of thermodynamics, Specific heat capacity, Specific heat capacity of water, Thermodynamic state variables and equation of State, Thermodynamic processes, Quasi-static process, Isothermal Process, Adiabatic Process, Isochoric Process, Isobaric process, Cyclic process, Second law of thermodynamics, Reversible and irreversible processes, Carnot engine, Carnot’s theorem.
Kinetic Theory:
  • Molecular nature of matter, Behaviour of gases, Boyle’s Law, Charles’ Law, Kinetic theory of an ideal gas, Pressure of an Ideal Gas, Kinetic interpretation of temperature, Law of equipartition of energy, Specific heat capacity, Monatomic Gases, Diatomic Gases, Polyatomic Gases, Specific Heat Capacity of Solids, Specific Heat Capacity of Water, Mean free path.
Waves:
  • Transverse and longitudinal waves, wave displacement relation in a progressive wave, amplitude and phase, wavelength and angular wave number, period, angular frequency and frequency, the speed of a traveling wave, the speed of a transverse wave on a stretched string, the speed of a longitudinal wave (speed of sound), the principle of superposition of waves, reflection of waves, standing waves and normal modes, beats, Doppler effect, and its two situations.
Ray Optics and Optical Instruments:
  • Sign convention, Reflection of Light by Spherical Mirrors, Mirror equation, refraction, total internal reflection, total internal reflection in nature and its technological applications, refraction at spherical surfaces and by lenses, power of a lens, combination of thin lenses in contact, refraction through a prism, dispersion by a prism, natural phenomena due to sunlight – Rainbow, Scattering of light, optical instruments, the eye, the simple and compound microscopes, refracting telescope and Cassegrain reflecting telescope.
Wave Optics:
  • Huygens principle, refraction and reflection of plane waves using Huygens principle, refraction in a rarer medium (at the denser medium boundary), reflection of a plane wave by a plane surface, the Doppler effect, coherent and incoherent addition of waves, interference of light waves and Young‘s experiment, Diffraction, Single slit, resolving power of optical instruments, the validity of ray optics, Polarisation by reflection, plane polarized light, polaroids, polarization by scattering.
Electric Charges and Fields:
  • Electric charge, conductors and insulators, charging by induction, basic properties of electric charges, additivity of charges, conservation of charge, quantization of charge, Coulomb’s law, forces between multiple charges, electric field, electric field due to a system of charges, physical significance of electric field, electric field lines, electric flux, electric dipole, the field of an electric dipole for points on the axial line and on the equatorial plane, physical significance of dipoles, dipole in a uniform external field, continuous charge distribution, Gauss’s law, Applications of Gauss’s Law, field due to uniformly charged thin spherical shell, infinitely long straight uniformly charged wire, infinite plane sheet.
Electrostatic Potential and Capacitance:
  • Electrostatic potential, potential due to a point charge, potential due to an electric dipole, potential due to a system of charges, equipotential surfaces, relation between field and potential, potential energy of a system of charges, potential energy in an external field, potential energy of a single charge, potential energy of a system of two charges in an external field, potential energy of a dipole in an external field, electrostatics of conductors, electrostatic shielding, dielectrics and polarisation, electric displacement, capacitors and capacitance, the parallel plate capacitor, effect of dielectric on capacitance, combination of capacitors, capacitors in series, capacitors in parallel, energy stored in a capacitor, Van de Graaff generator.
Current Electricity:
  • Electric current, electric current in conductors, Ohm’s law, the drift of electrons and the origin of resistivity, mobility, limitations of Ohm’s law, the resistivity of various materials, color code of resistors, Resistivity of various Materials, Color Code for carbon resisters, the Temperature dependence of resistivity, electrical energy, power, Combination of Resistors, Series and Parallel, Cells, EMF, internal resistance, cells in series and in parallel, Kirchhoff’s rules, Wheatstone Bridge, Meter Bridge, Potentiometer.
Moving Charges and Magnetism:
  • Magnetic force, sources and fields, magnetic field, Lorentz force, the magnetic force on a current-carrying conductor, motion in a magnetic field, the helical motion of charged particles, motion in combined electric and magnetic fields, velocity selector, cyclotron, magnetic field due to a current element, Biot – Savart’s law, Magnetic field on the axis of a circular current loop, Ampere’s circuital law, the solenoid and the toroid, force between two parallel current carrying conductors, the ampere (UNIT), torque on current loop, magnetic dipole, torque on a rectangular current loop in a uniform magnetic field, circular current loop as a magnetic dipole, the magnetic dipole moment of a revolving electron, the Moving Coil Galvanometer; conversion into ammeter and voltmeter.
Magnetism and Matter:
  • The bar magnet, the magnetic field lines, the bar magnet as an equivalent solenoid, The dipole in a uniform magnetic field, the electrostatic analog, Magnetism, and Gauss’s Law, The Earth’s magnetism, magnetic declination and dip, magnetization and magnetic intensity, magnetic properties of materials, permanent magnets and electromagnets.
Electromagnetic Induction:
  • The experiments of Faraday and Henry, magnetic flux, Faraday’s Law of induction, Lenz’s law and conservation of energy, motional electromotive force, energy consideration - a quantitative study, Eddy currents, inductance, mutual inductance, self-inductance, AC generator.
Alternating Current:
  • AC voltage applied to a resistor, representation of AC current and voltage by rotating vectors - Phasors, AC voltage applied to an inductor, AC voltage applied to a capacitor, AC voltage applied to a series LCR circuit, Phasor–diagram solution, analytical solution, resonance, sharpness of resonance, Power in AC circuit: The power factor, Wattless current LC oscillations, transformers.
Electromagnetic Waves:
  • Displacement Current, Maxwell’s equations, electromagnetic waves, sources of electromagnetic waves, nature of electromagnetic waves, electromagnetic spectrum: radio waves, microwaves, infrared waves, visible rays, ultraviolet rays, X-rays, gamma rays.
Dual Nature of Radiation and Matter:
  • Electron emission, Photoelectric Effect, Hertz’s observations, Hallwachs and Lenard’s observations, experimental study of photoelectric effect, effect of intensity of light on photocurrent, effect of potential on photoelectric current, effect of frequency of incident radiation on stopping potential, Photoelectric effect and Wave theory of Light, Einstein’s Photoelectric equation, Energy Quantum of Radiation, particle nature of light, the photon, wave nature of matter, photocell, Davisson and Germer Experiment
Atoms:
  • Alpha particle scattering and Rutherford’s nuclear model of atom, alpha particle trajectory, electron orbits, atomic spectra, spectral series, Bohr model of the hydrogen atom, energy levels, Franck – Hertz experiment, the line spectra of the hydrogen atom, deBroglie’s explanation of Bohr’s second postulate of quantization, LASER light.
Nuclei:
  • Atomic masses and composition of the nucleus, the discovery of the neutron, size of the nucleus, Mass - Energy, Nuclear Binding Energy, Binding energy of Nuecleon and its variation with Mass Number, Nuclear Force, Radioactivity (alpha, beta, and gamma particles and their properties), Law of radioactive decay, half-life and mean life of a Radioactive material, Nuclear Energy, Fission, Nuclear reactor, nuclear fusion, energy generation in stars, controlled thermonuclear fusion.
Semiconductor Electronics: Materials, Devices and Simple Circuits:
  • Classification of metals, conductors, and semiconductors on the basis of conductivity and energy bands, Band theory of solids, Intrinsic semiconductor, Extrinsic semiconductor, p-type semiconductor, n-type semiconductor, p-n junction, forward bias, reverse bias, Semiconductor diode, Application of junction diode as a rectifier, Zener Diode, Zener Diode as a voltage regulator, Optoelectronic junction devices, Photodiode, light emitting diode, solar cell. Junction transistor, structure and action, Basic transistor circuit configurations and transistor characteristics, transistor as a switch and as an amplifier (CE – Configuration), Feedback amplifier and transistor oscillator, Digital Electronics and Logic gates, NOT, OR, AND, NAND and NOR Gates, Integrated circuits.
Communication Systems:
  • Elements of a Communication system, basic terminology used in electronic communication systems, the bandwidth of signals, the bandwidth of transmission medium, propagation of electromagnetic waves, ground waves, sky waves, space wave, modulation, and its necessity, size of the antenna or aerial, effective power radiated by an antenna, mixing up of signals from different transmitters, amplitude modulation, production of amplitude modulated wave, detection of amplitude modulated wave
Subject: Chemistry
Atomic Structure:
  • Developments to Bohr’s model of the atom; Wave nature of electromagnetic radiation; Particle nature of electromagnetic radiation, Planck’s quantum theory; Evidence for the quantized electronic Energy levels: Atomic spectra, Bohr’s model for Hydrogen atom; Explanation of line spectrum of hydrogen; Limitations of Bohr’s model; Quantum mechanical considerations of subatomic particles; Dual behavior of matter; Heisenberg’s uncertainty principle; Quantum mechanical model of an atom. Important features of the Quantum mechanical model of atom; Orbitals and quantum numbers; Shapes of atomic orbitals; Energies of orbitals; Filling of orbitals in atoms. Aufbau Principle, Pauli’s exclusion Principle, and Hund’s rule of maximum multiplicity; Electronic configurations of atoms; Stability of half-filled and completely filled orbitals
Classification of Elements and Periodicity in Properties:
  • Modern periodic law and present form of the periodic table; Nomenclature of elements with atomic number greater than 100; Electronic configuration of elements and the periodic table; Electronic configuration and types of elements s,p,d. and f blocks; Trends in physical properties:(a) Atomic radius, (b) Ionic radius (c) Variation of size in inner transition elements, (d) Ionization enthalpy,(e) Electron gain enthalpy, (f) Electro negativity; Periodic trends in chemical properties: (a) Periodicity of Valence or Oxidation states, (b) Anomalous properties of second-period elements –diagonal relationship; Periodic trends and chemical reactivity.
Chemical Bonding and Molecular Structure:
  • Kossel - Lewis approach to chemical bonding, Octet rule, Lewis representation of simple molecules, formal charges, limitations of octet rule; Ionic or electrovalent bond - Factors favourable for the formation of ionic compounds- Crystal structure of sodium chloride, Lattice Enthalpy: General properties of ionic compounds; Bond Parameters - bond length ,bond angle, and bond enthalpy, bond order, resonance-Polarity of bonds dipole moment-Fajan rules; Valence Shell Electron Pair Repulsion (VSEPR) theory; Predicting the geometry of simple molecules; Valence bond theoryOrbital overlap concept-Directional properties of bonds-overlapping of atomic orbitals- types of overlapping and nature of covalent bonds-strength of sigma and pi bonds-Factors favouring the formation of covalent bonds; Hybridisation- different types of hybridization involving s,p and d orbitals- shapes of simple covalent molecules; Coordinate bond - definition with examples; Molecular orbital theory - Formation of molecular orbitals, Linear combination of atomic orbitals(LCAO)-conditions for combination of atomic orbitals-, Types of Molecular orbitals, Energy level diagrams for molecular orbitals -, Electronic Configuration and Molecular Behaviour, Bonding in some homo nuclear diatomic molecules- H2, He2, Li2, B2, C2, N2 and O2; Hydrogen bonding-cause of formation of hydrogen bond - Types of hydrogen bonds-inter and intra molecular-General properties of hydrogen bonds.
States of Matter: Gases and Liquids:
  • Intermolecular forces; Thermal Energy; Intermolecular forces Vs Thermal interactions; The Gaseous State; The Gas Laws; Ideal gas equation; Graham’s law of diffusion - Dalton’s Law of partial pressures; Kinetic molecular theory of gases; Kinetic gas equation of an ideal gas (No derivation) deduction of gas laws from Kinetic gas equation;; Behaviour of real gases - Deviation from Ideal gas behaviour - Compressibility factor Vs Pressure diagrams of real gases;
Stoichiometry:
  • Laws of Chemical Combinations - Law of Conservation of Mass, Law of Definite Proportions, Law of Multiple Proportions, Atomic and molecular masses- mole concept and molar mass. Concept of equivalent weight; Percentage composition of compounds and calculations of empirical and molecular formulae of compounds; Stoichiometry and stoichiometric calculations- limiting reagent; Methods of Expressing concentrations of solutions- mass per cent, mole fraction, molarity, molality and normality; Redox reactions-classical idea of redox reactions, oxidation and reduction reactions- redox reactions in terms of electron transfer; Oxidation number concept; Types of Redox reactions combination, decomposition, displacement and disproportionation reactions; Balancing of redox reactions-oxidation number method Half reaction (ion-electron) method;
Thermodynamics:
  • Thermodynamic Terms; The system and the surroundings; Types of systems and surroundings; The state of the system; The Internal Energy as a State Function. (a)Work (b) Heat (c) The general case, the first law of Thermodynamics; Applications; Work; Enthalpy, H- a useful new state function; Extensive and intensive properties; The relationship between Cp and Cv; Measurement of∆U and ∆H: Calorimetry; Enthalpy change, ∆r H of reactions- reaction Enthalpy (a) Standard enthalpy of reactions, (b) Enthalpy changes during transformations, (c) Standard enthalpy of formation, (d) Thermo chemical equations (e) Hess’s law of constant Heat summation; Enthalpies for different types of reactions. (a) Standard enthalpy of combustion (∆cH 0 ), (b) Enthalpy of atomization (∆aH 0 ), phase transition, sublimation and ionization, (c) Bond Enthalpy (∆bondH 0 ), (d) Enthalpy of solution (∆solH 0 ) and dilution-lattice enthalpy; Spontaneity. (a) Is decrease in enthalpy a criterion for spontaneity? (b) Entropy and spontaneity, the second law of thermodynamics, (c) Gibbs Energy and spontaneity; Absolute entropy and the third law of thermodynamics.
Chemical Equilibrium and Acids-Bases:
  • Equilibrium in Physical process; Equilibrium in chemical process - Dynamic Equilibrium; Law of chemical Equilibrium - Law of mass action and Equilibrium constant; Homogeneous Equilibria, Equilibrium constant in gaseous systems. Relationship between KP and Kc; Heterogeneous Equilibria; Applications of Equilibrium constant; Relationship between Equilibrium constant K, reaction quotient Q, and Gibbs energy G; Factors affecting Equilibria.-Le-chatlier principle application to the industrial synthesis of Ammonia and Sulphur trioxide; Ionic Equilibrium in solutions; Acids, bases, and salts- Arrhenius, BronstedLowry and Lewis concepts of acids and bases; Ionisation of Acids and Bases - Ionisation constant of water and its ionic product- Ph scale-ionization constants of weak acids-ionization of weak bases-relation between Ka and Kb-Di and polybasic acids and di and poly acidic Bases-Factors affecting acid strength- Common 0ion effect in the ionization of acids and bases- Buffer solutions (only definition) - Solubility Equilibria of sparingly soluble salts. Solubility product constant Common ion effect on solubility of Ionic salts.
Hydrogen and its Compounds:
  • Position of hydrogen in the periodic table; Dihydrogen-Occurrence and Isotopes; Hydrides: Ionic, covalent, and non-stoichiometric hydrides;Water: Physical properties; structure of water, ice. Chemical properties of water; hard and soft water, Temporary and permanent hardness of water; Heavy Water; Hydrogen as a fuel.
The s-Block Elements (Alkali and Alkaline Earth Metals):
  • Group 1 Elements :Alkali metals; Electronic configurations; Atomic and Ionic radii; Ionization enthalpy; Hydration enthalpy; Physical properties; Chemical properties; Uses; General characteristics of the compounds of the alkali metals: Oxides; Halides; Salts of oxo Acids; Anomalous properties of Lithium: Differences and similarities with other alkali metals, Diagonal relationship; similarities between Lithium and Magnesium; Some important compounds of Sodium: Sodium Chloride
  • Group 2 Elements: Alkaline earth elements; Electronic configuration; Ionization enthalpy; Hydration enthalpy; Physical properties, Chemical properties; Uses; General characteristics of compounds of the Alkaline Earth Metals: Oxides, hydroxides, halides, salts of oxy acids (Carbonates; Sulphates and Nitrates); Anomalous behavior of Beryllium; its diagonal relationship with Aluminium; Some important compounds of calcium: Preparation and uses of Calcium Hydroxide, Plaster of Paris; Cement;
P-Block Elements Group 13 (Boron Family):
  • General introduction – Electronic configuration, Atomic radii, Ionization enthalpy, Electro negativity; Physical & Chemical properties (Note: Aluminum reactivity towards acids & alkalies is deleted) Important trends and anomalous properties of boron; Uses of boron, aluminum and their compounds.
P-Block Elements Group 14 (Carbon Family):
  • General introduction – Electronic configuration, Atomic radii, Ionization enthalpy, Electro negativity; Physical and chemical properties; Important trends and anomalous properties of carbon; Allotropes of carbon; Uses of carbon;
Organic Chemistry-Some Basic Principles and Techniques and Hydro Carbons:
  • General introduction; Tetravalency of Carbon: shapes of organic compounds; Structural representations of organic compounds; Classification of organic compounds; Nomenclature of organic compounds; Isomerism; Fundamental concepts in organic reaction mechanisms; Fission of covalent bond; Nucleophiles and electrophiles; Electron movements in organic reactions; Electron displacement effects in covalent bonds: inductive effect, resonance, resonance effect, electromeric effect, hyper conjugation; Types of Organic reactions; Hydrocarbons: Classification of Hydrocarbons; Alkanes - Nomenclature, isomerism (structural and conformations of ethane only); Preparation of alkanes; Properties - Physical properties and chemical Reactivity, Substitution reactions – Halogenation (free radical mechanism is deleted), Controlled Oxidation, Isomerisation, Aromatization, and reaction with steam; AlkenesNomenclature, structure of ethene, Isomerism (structural and geometrical); Methods of preparation;Properties-Physical and chemical reactions: Addition of dihydrogen, halogen, water, sulphuric acid, Hydrogenhalides (Mechanism- ionic and peroxide effect, Markovnikov’s, antiMarkovnikov’s or Kharascheffect). Oxidation, Ozonolysis and Polymerization; Alkynes - Nomenclature and isomerism, structure of acetylene. Methods of preparation of acetylene; Physical properties, Chemical reactions- acidic character of alkyne, addition reactions-of hydrogen, Halogen, Hydrogen halides and water. Polymerization; Aromatic Hydrocarbons: Nomenclature and isomerism, Structure of benzene, Resonance and aromaticity; Preparation of benzene. Physical properties. Chemical properties: Mechanism of electrophilic substitution. Electrophilic substitution reactions- Nitration, Sulphonation, Halogenation, Friedel-Craft’s alkylation and acylation; Directive influence of functional groups in mono substituted benzene, Carcinogenicity and toxicity.
Solid State:
  • General characteristics of solid state; Amorphous and crystalline solids; Classification of crystalline solids based on different binding forces (molecular, ionic, metallic and covalent solids); Probing the structure of solids: X-ray crystallography; Crystal lattices and unit cells. Bravais lattices primitive and centered unit cells; Number of atoms in a unit cell (primitive, body centered and face centered cubic unit cell);Close packed structures: Close packing in one dimension, in two dimensions and in three dimensions- tetrahedral and octahedral voids- formula of a compound and number of voids filled- locating tetrahedral and octahedral voids; Packing efficiency in simple cubic, bcc and in hcp, ccp lattice; Calculations involving unit cell dimensionsdensity of the unit cell; Imperfections in solids-types of point defects-stoichiometric and nonstoichiometric defects; Electrical properties-conduction of electricity in metals, semiconductors and insulators- band theory of metals; Magnetic properties
Solution:
  • Types of solutions; Expressing concentration of solutions-mass percentage, volume percentage, mass by volume percentage, parts per million, mole fraction, molarity and molality; Solubility: Solubility of a solid in a liquid, solubility of a gas in a liquid, Henry’s law; Vapour pressure of liquid solutions: vapour pressure of liquid- liquid solutions. Raoult’s law as a special case of Henry’s law -vapour pressure of solutions of solids in liquids; Ideal and non-ideal solutions; Colligative properties and determination of molar mass-relative lowering of vapour pressure-elevation of boiling point-depression of freezing point-osmosis and osmotic pressure-reverse osmosis and water purification; Abnormal molar masses-van’t Hoff factor
Electrochemistry and Chemical Kinetics:
  • Electrochemistry: Electrochemical cells; Galvanic cells: measurement of electrode potentials; Nernst equation- equilibrium constant from Nernst equation- electrochemical cell and Gibbs energy of the cell reaction; Conductance of electrolytic solutions-measurement of the conductivity of ionic solutions-variation of conductivity and molar conductivity with concentration-strong electrolytes and weak electrolytes-applications of Kohlrausch’s law; Electrolytic cells and electrolysis: Faraday’s laws of electrolysis-products of electrolysis; Batteries: primary batteries and secondary batteries, Fuel cells, Corrosion of metals-Hydrogen economy.
  • Chemical Kinetics: Rate of a chemical reaction; Factors influencing rate of a reaction: dependence of rate on concentration- rate expression and rate constant-order of a reaction, molecularity of a reaction; Integrated rate equations-zero order reactions-first order reactions- half-life of a reaction; Pseudo first order reactions;Temperature dependence of the rate of a reaction -effect of catalyst; Collision theory of chemical reaction rates
Surface Chemistry:
  • Adsorption: Distinction between adsorption and absorption mechanism of adsorption- types of adsorption- characteristics of physisorption-characteristics of chemisorption- adsorption isotherms- adsorption from solution phase-applications of adsorption; Catalysis: Catalysts, promoters, and poisons-autocatalysis- homogeneous and heterogeneous catalysis-adsorption theory of heterogeneous catalysis- important features of solid catalysts: (a)activity (b)selectivity- shape-selective catalysis by zeolites- enzyme catalysis-characteristics and mechanism- catalysts in industry
  • Colloids: Classification of colloids: Classification based on physical state of dispersed phase and dispersion medium-classification based on nature of interaction between dispersed phase and dispersion medium- classification based on type of particles of the dispersed phase-multimolecular, macromolecular and associated colloids-cleansing action of soaps-preparation of colloidspurification of colloidal solutions- properties of colloidal solutions:Colligative properties, Tyndal effect, colour, Brownian movement-charge on colloidal particles, electrophoresis; coagulationprecipitation methods-coagulation of lyophilic sols and protection of colloids- Emulsions; Colloids around us-application of colloids.
General Principles of Metallurgy:
  • Occurance of metals; Concentration of ores- levigation, magnetic separation, froth floatation leaching; Extraction of crude metal from concentrated ore-conversion to oxide, reduction of oxide to the metal; Thermodynamic principles of metallurgy-Ellingham diagram-limitations- applications-extraction of iron, copper and zinc from their oxides; Electrochemical principles of metallurgy; Oxidation and reduction; Refining of crude metal-distillation, liquation poling, electrolysis, zone refining and vapour phase refining; Uses of aluminium, copper, zinc and iron
p-Block Elements:
  • Group-15 Elements: Occurrence-electronic configuration, atomic and ionic radii, ionization enthalpy, electro negativity, physical and chemical properties; Dinitrogen-preparation, properties and uses; Compounds of nitrogen-preparation, properties and uses of ammonia; Oxides of nitrogen; Preparation and properties of nitric acid; Phosphorous-allotropic forms; Phosphine- preparation and properties; Phosphorous halides; Oxoacids of phosphorous; Phosphorous halides & Oxo acids of phosphorous
  • Group-16 Elements: Occurrence-electronic configuration, atomic andionic radii, ionization enthalpy, electron gain enthalpy, electro negativity, physical and chemical properties; Dioxygenpreparation, properties and uses; Simple oxides; Ozone-preparation, properties, structure and uses; Sulphur-allotropic forms; Sulphur dioxide-preparation, properties and uses; Oxoacids of sulphur; Sulphuric acid-industrial process of manufacture, properties and uses.
  • Group-17 Elements: Occurrence, electronic configuration, atomic and ionic radii, ionization enthalpy,electron gain enthalpy, electronegativity, physical and chemical properties; Chlorinepreparation, properties and uses; Hydrogen chloride- preparation, properties and uses; Oxoacids of halogens; Interhalogen compounds-preparation, properties and uses.
  • Group-18 Elements: Occurrence, electronic configuration, ionization enthalpy, atomic radii, electron gain enthalpy, physical and chemical properties(a) Xenon-fluorine compounds- XeF2,XeF4 and XeF6 -preparation, hydrolysis and formation of fluoro anions-structures of XeF2, XeF4 and XeF6 (b) Xenon oxygen compounds XeO3and XeOF4 -their formation and structures-uses of noble gases.
d and Block Elements & Coordination Compounds:
  • d and f block elements: Position in the periodic table; Electronic configuration of the d-block elements; General properties of the transition elements (d-block) -physical properties, variation in atomic and ionic sizes of transition series, ionization enthalpies, oxidation states, trends in the M²+ /M and M³+ /M²+ standard electrode potentials, trends in the stability of higher oxidation states, chemical reactivity, and Eθ values, magnetic properties, formation of colored ions, formation of complex compounds, catalytic properties, formation of interstitial compounds, and alloy formation; Some important compounds of transition elements-oxides and oxoanions of metals-uses of potassium dichromate and potassium permanganate structures of chromate, dichromate, manganate, and permanganate ions; Inner transition elements(f-block)-lanthanoids-electronic configuration-atomic and ionic size oxidation states- general characteristics; The Actinoids- electronic configurations, ionic sizes, oxidation states, general characteristics and comparison with lanthanoids; Some applications of d and f block elements
  • Coordination compounds: Werner’s theory of coordination compounds; Definitions of some terms used in coordination compounds; Nomenclature of coordination compounds-IUPAC nomenclature; Isomerism in coordination compounds-(a)Stereo isomerism- Geometrical and optical isomerism (b)Structural isomerism- linkage, coordination, ionization and solvate isomerism Bonding in coordination compounds. (a)Valence bond theory - magnetic properties of coordination compounds-limitations of valence bond theory (b) Crystal field theory (i) Crystal field splitting in octahedral and tetrahedral coordination entities (ii) Colour in coordination compounds- limitations of crystal field theory; Bonding in metal carbonyls; Stability of coordination compounds; Importance and applications of coordination compounds.
Polymers
  • Classification of Polymers -Classification based on source, structure, mode of polymerization, molecular forces and growth polymerization; Types of polymerization reactions- addition polymerization or chain growth polymerization- Ionic polymerization, free radical mechanism-preparation of addition polymers- polythene, Teflon and poly acrylonitrile condensation polymerization or step growth polymerization-polyamides- preparation of Nylon 6,6 and nylon 6-polyesters- terylene- bakelite, melamine, formaldehyde polymer-copolymerization- Rubber- natural rubber-vulcanisation of rubber-Synthetic rubber preparation of neoprene and buna-N; Molecular mass of polymers-number average and weight average molecular masses- polydispersity index(PDI); Biodegradable polymers- poly βHydroxy butyrate-Co β-Hydroxy Velarate (PHBV), Nylon 2-nylon 6; Polymers of commercial importance- poly propene, polystyrene, polyvinyl chloride(PVC), urea-formaldehyde resin, glyptic, bakelite- their monomers, structures and uses
Biomolecules:
  • Carbohydrates- Classification of carbohydrates - Monosaccharides: preparation of glucose from sucrose and starch-Properties and structure of glucose-D, L configurations and (+), (-) configurations of glucose-Structure of fructose; Disaccharides: Sucrose- preparation, structure; Invert sugar- Structures of maltose and lactosePolysaccharides: Structures of starch, cellulose and glycogen- Importance of carbohydrates; Amino acids: Natural amino acids-classification of amino acids-structures and D and L formsZwitterions; Proteins-Structures, classification, fibrous and globular- primary, secondary, tertiary and quaternary structures of proteins- Denaturation of proteins; Enzymes: Enzymes, mechanism of enzyme action; Vitamins: Explanation-names classification of vitamins - sources of vitamins-deficiency diseases of different types of vitamins; Nucleic acids: chemical composition of nucleic acids, structures of nucleic acids, DNA fingerprinting biological functions of nucleic acids; Hormones: Definition, different types of hormones, their production, biological activity, diseases due to their abnormal activities
Chemistry In Everydaylife-
  • Drugs and their classification: (a) Classification of drugs on the basis of pharmocological effect (b) Classification of drugs on the basis of drug action (c) Classification of drugs on the basis of chemical structure (d) Classification of drugs on the basis of molecular targets; Drug-Target interaction-Enzymes as drug targets (a) Catalytic action of enzymes (b) Drug-enzyme interaction Receptors as drug targets; Therapeutic action of different classes of drugs: antacids, antihistamines, neurologically active drugs: tranquilizers, analgesics– non- narcotics, narcotic analgesics, antimicrobial antibiotics, antiseptics and disinfectants-antifertility drugs; Chemicals in food- artificial sweetening agents, food preservatives, antioxidants in food; Cleansing agents-soaps and synthetic detergents
Halo Alkanes and Halo Arenes:
  • Classification and nomenclature; Nature of C-X bond; Methods of preparation: Alkyl halides and aryl halides-from alcohols, from hydrocarbons (a) by free radical halogenation (b) by electrophilic substitution (c) by replacement of diazonium group (Sandmeyer reaction) (d) by the addition of hydrogen halides and halogens to alkenes-by halogen exchange reactions (Finkelstein reaction); Physical properties-melting and boiling points, density and solubility; Chemical reactions: Reactions of haloalkanes (i) Nucleophilic substitution reactions (a) SN² mechanism (b) SN¹mechanism (c) stereochemical aspects of nucleophilic substitution reactions-optical activity (ii) Elimination reactions (iii) Reaction with metals-Reactions of haloarenes: (i) Nucleophilic substitution (ii) Electrophilic substitution and (iii) Reaction with metals; Polyhalogen compounds: Uses and environmental effects of dichloro methane, trichloromethane, triiodomethane, tetrachloro methane, freons and DDT
Organic Compounds Containing C,H, and O (Alcohols, Phenols, Ethers, Aldehydes, Ketones and Carboxylic acids):
  • Alcohols, Phenols and Ethers: Alcohols, phenols and ethers-classification; Nomenclature: (a)Alcohols, (b) phenols and (c) ethers; Structures of hydroxy and ether functional groups; Methods of preparation: Alcohols from alkenes and carbonyl compounds, from Grignard reagents; Phenols from haloarenes, benzene sulphonic acid, diazonium salts, cumene; Physical properties of alcohols and phenols; Chemical reactions of alcohols and phenols (i) Reactions involving cleavage of O-H bond in alcohols-Acidity of alcohols and phenols, esterification (ii) Reactions involving cleavage of C-O bond-reactions with HX, PX3, dehydration and oxidation (iii) Reactions of phenols-electrophilic aromatic substitution, Kolbe’s reaction, Reimer - Tiemann reaction, reaction with zinc dust, oxidation; Commercially important alcohols (methanol, ethanol) Ethers-Methods of preparation: By dehydration of alcohols, Williamson synthesis-Physical properties-Chemical reactions: Cleavage of C-O bond and electrophilic substitution of aromatic ethers (anisole).
  • Aldehydes and Ketones: Nomenclature and structure of carbonyl group; Preparation of aldehydes and ketones-(1) by oxidation of alcohols (2) by dehydrogenation of alcohols (3) from hydrocarbons -Preparation of aldehydes (1) from acyl chlorides (2) from nitriles and esters (3) from hydrocarbons-Preparation of ketones (1)from acyl chlorides (2) from nitriles (3) from benzene or substituted benzenes; Physical properties of aldehydes and ketones; Chemical reactions of aldehydes and ketones-nucleophilic addition, reduction, oxidation, reactions due to α-Hydrogen and other reactions (Cannizzaro reaction, electrophilic substitution reaction); Uses of aldehydes and ketones.
  • Carboxylic acids: Nomenclature and structure of carboxyl group; Methods of preparation of carboxylic acids (1) from primary alcohols and aldehydes (2) from alkyl benzenes (3) from nitriles and amides (4) from Grignard reagents (5) from acyl halides and anhydrides (6) from esters; Physical properties; Chemical reactions: (i) Reactions involving cleavage of O-H bond acidity, reactions with metals and alkalies (ii) Reactions involving cleavage of C-OH bond formation of anhydride, reactions with PCl5, PCl3, SOCl2, esterification and reaction with ammonia (iii) Reactions involving-COOH group-reduction, decarboxylation (iv) Substitution reactions in the hydrocarbon part-halogenation and ring substitution; Uses of carboxylic acids.
Organic Compounds Containing Nitrogen:
  • Amines: Structure of amines; Classification; Nomenclature; Preparation of amines: reduction of nitro compounds, ammonolysis of alkylhalides, reduction of nitriles, reduction of amides, Gabriel phthalimide synthesis and Hoffmann bromamide degradation reaction; Physical properties; Chemical reactions: basic character of amines, alkylation, acylation, carbyl amine reaction, reaction with nitrous acid, reaction with aryl sulphonyl chloride, electrophilic substitution of aromatic amines (aniline)-bromination, nitration and sulphonation. DIAZONIUM SALTS- Methods of preparation of diazonium salts (by diazotization); Physical properties; Chemical reactions: Reactions involving displacement of Nitrogen, reactions involving retention of di azo group –coupling reactions; Importance of diazonium salts in synthesis of aromatic compounds
  • Cyanides and Isocyanides: Structure and nomenclature of cyanides and isocyanides; Preparation, physical properties and chemical reactions of cyanides and isocyanide
2023